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Viewpoint 

Plant water use theory should incorporate hypotheses about extreme environments, 

population ecology, and community ecology 

 

Summary 

Plant water use theory has largely been developed within a plant-performance paradigm that 

conceptualizes water use in terms of value for carbon gain, and that sits within a neoclassical 

economic framework. This theory works very well in many contexts but does not consider other 

values of water to plants that could impact their fitness. Here we survey a range of alternative 

hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized 

around relevance to extreme environments, life history and population ecology, and species 

interactions within a community context. Most of these hypotheses are not yet empirically tested 

and some are controversial (e.g., requiring more agency and behavior than is commonly believed 

possible for plants). Some hypotheses, especially those focused around using water to avoid 

thermal stress, using water to promote reproduction instead of growth, and hoarding water, may 

be useful to incorporate into theory or to implement in Earth System Models.  

 

Introduction 

Predicting plant water use for species with differing traits and across environmental conditions is 

a central challenge for ecophysiology (Venturas et al. 2017; Kannenberg et al. 2022). Accurate 

predictions are critical for fundamental knowledge of plant biology, as well as for upscaling to 

ecosystem fluxes, e.g., via Earth System Models (Christoffersen et al. 2016; Fisher et al. 2018). 

Current marginal gain theory for water use (Wang et al. 2020) has been developed from a 

foundation of stomatal optimization framed in terms of maximizing carbon gain (Cowan & 

Farquhar 1977). This theory proposes that plants maximize 𝐴𝐴− 𝛩𝛩, where 𝐴𝐴 represents carbon 

gain and 𝛩𝛩 represents some carbon penalties or costs, e.g., relating to soil drying, or hydraulic 

failure. Both. If E is the amount of water plants use, then mathematically, maximization occurs 

when 𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, i.e. when the marginal gain equals the marginal penalty (Wang et al. 2020). 

Implementations of theory make divergent assumptions about 𝐴𝐴 and 𝛩𝛩, e.g., whether the 
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timescale of each is instantaneous or temporally extended (i.e. whether A and 𝛩𝛩 are defined as a 

rate or a quantity), whether the biological scale is a single leaf or a whole plant, whether the 

environment is constant or variable, etc. Often, 𝐸𝐸 is assumed to depend only on stomatal 

opening, so the term ‘stomatal optimization theory’ is commonly used interchangeably with 

‘marginal gain theory’. 

 

Current iterations of marginal gain theory are widely considered reliable and generally suggest 

that the penalty depends on vapor pressure deficit, or soil water potential, or other similar 

variables (Wang et al. 2020; Kannenberg et al. 2022), leading to the development of marginal 

gain models that consider the entire soil-plant-atmosphere-continuum (Sperry et al. 2016; Wolf 

et al. 2016). For example, some empirical models based on vapor pressure deficit (Leuning 

1995; Medlyn et al. 2011) are widely used to parameterize Earth System Models, and predictions 

are often reliable at leaf and ecosystem scale (Franks et al. 2018). Nevertheless, substantial 

uncertainty remains about the biological and temporal scales over which this optimization is 

valid (Feng et al. 2022). 

 

Optimal plant water use may be more complex than what most implementations of marginal gain 

theory indicate. As a first example, theory often fails in hot environments. Previous efforts to 

model gas exchange at higher thermal stresses (Franks et al. 1997; Eamus et al. 2008) have 

yielded results that are at odds with stomatal optimization theory thought to apply at short 

timescales (Medlyn et al. 2011). Heat avoidance can occur, where water use is optimized not to 

maximize instantaneous carbon gain per unit water loss (i.e. marginal gain theory), but instead to 

prioritize evaporative cooling that avoids thermal stress/mortality at high temperatures (Chaves 

et al. 2016; Slot et al. 2016; Urban et al. 2017; Blonder & Michaletz 2018; Aparecido et al. 

2020; Marchin et al. 2022a) and thus enables sustained long-term carbon gain. As a second 

example, stomatal optimization theory thought to apply to isolated individuals can fail when 

plants are measured in community contexts. Recent models of stomatal optimization under 

competition (Wolf et al. 2016; Lu et al. 2020) indicate that water use strategies should change 

when neighbors compete for water. This prediction of water use shifting when growing with 

competitors vs. alone has been upheld in at least two sets of experiments (Vysotskaya et al. 

2011; Zenes et al. 2020).  
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Conceptual framing 

Marginal gain theory has been limited in four practical ways. First, validations of theory have 

been carried out primarily on a limited set of species, often crops (von Caemmerer & Evans 

1991; Harley et al. 1992). While these cases are clearly of high interest, they represent a limited 

and biased subset of plant functional and evolutionary diversity. Second, tests of theory have 

been limited in extreme (very hot and concurrently very wet or very dry) environments (Schulze 

et al. 1973; Aparecido et al. 2020; Grossiord et al. 2020). This limitation is especially critical for 

accurate predictions in response to novel environmental conditions (Williams & Jackson 2007) 

projected under global change. Third, most data come from measurements of leaves, isolated 

from the whole-plant context, or individual plants, isolated from their population or community 

contexts. While such data provide snapshots of behavior under controlled conditions, they may 

not accurately represent behavior in complex natural conditions. Fourth, theory may not yet 

provide a sufficient description of all the biological processes affecting water use. This reflects 

either a tradeoff between model complexity and usefulness (Harrison et al. 2021), or 

alternatively, incomplete process knowledge or data for parameterizing models. 

 

Marginal gain theory is also limited by its foundational assumption that plant water use is a 

problem analogous to the rational actor problem in classical (Smith 1776) and neoclassical 

economics (Jevons 1879). Both propose that the leaf or plant (analogously, the individual) has 

evolved mechanisms (chooses actions) that maximize performance (maximize utility or diminish 

marginal utility) due to natural selection (self-interest). Both also assume that the optimization 

can be conceived in terms of a single measure and store of value, carbon (money). This 

assumption has been widely critiqued in economics (Hollis & Nell 1975; Sen 1977), as it leads to 

both inaccurate predictions of human behavior (Veblen 1898; Fullbrook 2004), and also negates 

the possibility of considering cooperative behavior and multiple incommensurable types of 

values relevant to decision-making (e.g., ‘human wellbeing’ or ‘ecosystem health’) (Jackson 

2016). Marginal gain theory for plant water use draws from this economic heritage, and 

implicitly requires us to accept the premise that plant behavior can be collapsed to the single 

currency of carbon, and the single objective of getting as much of it as possible. This logic also 

produces the concepts of ecosystem service valuation (Reid et al. 2005) and natural capital 
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(Costanza et al. 1997), which propose that money-based prices or valuations can be given to 

values that may actually not be commensurable. Returning to plant water use, it therefore may be 

useful to cast off the shackles of old economic ideas, and embrace a broader perspective on the 

values of water to plants that are not defined as, or priced in terms of, carbon gain. 

 

Our central hypothesis is that the value of water to a plant extends far beyond its immediate 

value for instantaneous carbon gain, requiring either extension of marginal gain theory to more 

biological and temporal contexts, or alternatively development of new theory that asks how 

water use influences fitness–not ecophysiological performance. We survey hypotheses that 

operate at different biological and temporal scales (illustrated in Figure 1) that might cause 

current theory to fail, which are linked to performance in extreme environments (‘E’ 

hypotheses), to life history and population ecology (‘P’ hypotheses), and to species interactions 

and community context (‘C’ hypotheses). We then sketch a range of observed and yet 

unobserved hypotheses that are still on the frontier of current theory and that may run contrary to 

current theory’s predictions. 

 

Some of the hypotheses we propose are at odds with current understandings of how plants 

process information and ascribes a level of agency to plants that is not widely considered 

reasonable at individual or population scale. There is also little evidence to date that plants have 

evolved mechanisms to enable such complex behavior. Nevertheless, these strategies remain an 

under-investigated conceptual possibility. We used agentive terms within these hypotheses 

below because they are standard within game theory and computer science. Additionally, the 

limits of plant agency, behavior, communication/sensing, and social interactions remain poorly 

studied (Silvertown & Gordon 1989; Karban 2015; van Loon 2016). 

 

Hypotheses relating to extreme environments 

E1. Avoiding thermal damage or mortality 

High transpiration may reflect prioritization of leaf cooling to avoid heat damage or death in 

thermally extreme environments (Figure 2A). This appears contrary to the stomatal optimization 

prediction (over short timescales) that stomata should close to prevent hydraulic failure, and also 

appears maladaptive because of the reduced efficiency of photosynthesis at high temperatures. 
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However, increasing transpiration at high temperatures actually can be optimal over long 

timescales if water is available and doing so prevents leaf thermal damage or mortality, i.e. if it 

promotes future carbon gain, and offsets the loss of carbon invested in the construction of the 

leaf (Blonder & Michaletz 2018). This type of optimization is difficult to capture in analytic 

models because leaf mortality is not reversible: if a leaf has exceeded a critical temperature even 

once, its future carbon gain is zero, regardless of the temperature the leaf later obtains.  

 

Low transpiration rates prevent evaporative cooling and lead to high temperatures in leaves 

(Gates 1968; Monteith & Unsworth 2013) and also limit advective heat transfer by xylem sap, 

which can lead to high temperatures in branch and stem phloem, xylem, and sapwood (Swanson 

1994). High leaf and branch temperatures, if sustained, could cause permanent (or costly-to-

repair) biochemical damage, structural changes and reduced hydraulic conductivity of xylem 

(Michaletz et al. 2012), or cell and tissue necrosis (Teskey et al. 2015). Failure to evaporatively 

cool can also cause mortality. For example, during a hot drought in Australia, crown dieback in 

urban trees was negatively correlated with the critical temperatures for photosystem II 

dysfunction, while leaf water potentials showed trees were not severely water stressed (Marchin 

et al. 2022b). This suggests that dieback was driven by heat stress (not embolism) resulting from 

reduced transpirational cooling that enabled leaf temperatures to exceed a critical threshold.  

 

Cooling is likely to be important in plants with relatively carbon-expensive and/or evergreen 

leaves, in environments that experience transiently high temperatures, especially when combined 

with high soil water availability (Aparecido et al. 2020). For example, stomatal responses to 

vapor pressure deficit and temperature can become decoupled in some desert plants (Schulze et 

al. 1973). There are likely more efficient ways to keep leaves cool via trait evolution over longer 

timescales, or alternatively higher thermal tolerances to occur via phenotypic plasticity or 

evolution. These latter approaches are likely taken by many hot-adapted species, which can see 

leaf temperatures reach 48-49 °C associated with midday depressions of photosynthesis and 

transpiration, while CAM plants can exceed 50 °C leaf temperature during mid-day, and some 

cacti obtain temperatures >50 °C, with heat tolerances up to 69 °C (Smith et al. 1984). For 

example, the Rubisco activase isoform in Agave remains active at up to 50 °C, 10° C higher than 

Oryza isoforms (Shivhare & Mueller-Cajar 2017). 
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Several underlying physiological processes could generate this cooling response. The most 

straightforward possibility is stomatal opening at high temperatures. Sensory mechanisms remain 

unknown, but may include detection of unfolded proteins, and changes in membrane fluidity 

(Hayes et al. 2021). Abscisic acid (ABA) may play a role, as its accumulation is linked to 

reduced transpiration and increased hydraulic conductivity during drought stress (Muhammad 

Aslam et al. 2022). Alternatively, other signal transduction mechanisms could cause high 

temperature stomatal opening (Kostaki et al. 2020). Another speculative possibility is stomatal 

popping, in which pressurized hot air in intercellular spaces forces guard cell opening (Brix et al. 

1992; Aparecido et al. 2020). This is unlikely because such popping would occur only once, after 

which depressurization would occur and prevent further water flux. Alternatively, transpiration 

fluxes could arise from high cuticular conductance, which is known to increase at higher leaf 

temperatures, due to changes in the physical properties of cuticular waxes. This last cooling 

mechanism seems most plausible and has been described in desert (Bueno et al. 2019) and 

tropical (Slot et al. 2021) species, though it is unclear yet whether it is adaptive.  

 

Cooling can also occur via leaf positioning rather than transpiration. For example, in Piper 

auritum, a tropical species associated with high light conditions in canopy gaps (Chiariello et al. 

1987), high water use results in mid-day wilting. This reduces the direct sunlight that hits the 

leaves in their exposed habitat, which in turn decreases leaf temperatures. The reduction in 

incident irradiance caused photosynthesis to decrease, but less so than transpiration, so water use 

efficiency is improved by the avoidance of mid-day sun. The continued photosynthesis, albeit at 

reduced rate, suggests that this strategy enables optimization of time-integrated carbon capture. 

Similar behavior is observed in wheat, where leaf erectness and leaf rolling behavior are 

breeding targets for improving heat tolerance (Hunt et al. 2018). 

 

Cooling requires available water, which can depend both on precipitation, but also species 

properties like maximum rooting depths and capacitance. For example, in hot conditions, deeply 

rooted evergreen woody plant taxa, Quercus turbinella and Rhus ovata, were shown to achieve 

high leaf-level transpiration rates that were decoupled from rates of carbon uptake (Aparecido et 

al. 2020). Similarly, stem gas exchange measurements conducted on mature Carnegiea gigantea 
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(saguaro cactus) in the Sonoran Desert during midsummer yielded daytime transpiration rates 

that at times equaled nighttime transpiration rates during Phase I of the CAM cycle (Bronson et 

al. 2011). These patterns indicate that under heat stress, giant saguaros either actively transpire 

water stored in their succulent stems by opening their stomata during the day, in turn losing 

carbon fixed at night – potentially as a mechanism to reduce stem surface temperatures – or 

experience daytime water loss through the cuticle as surface temperatures increase. As another 

example, transient shallow soil moisture conditions enable the desert shrub, creosote (Larrea 

tridentata) to take a riskier, anisohydric hydraulic strategy following precipitation pulses in both 

winter and summer; while adopting a more conservative, isohydric strategy in other periods 

when shallow soil moisture is absent (Guo et al. 2020). Likewise, warm-adapted cottonwood 

(Populus fremontii) – a desert riparian tree species – increases stomatal conductance during the 

warmest time of the year, unlike cool-adapted genotypes that show no seasonal changes in 

stomatal conductance (Blasini et al. 2022). Consequently, warm-adapted genotypes maintain 

cooler leaves than cool-adapted genotypes, which improves carbon balance and protects against 

leaf thermal damage.  

 

E2. Minimizing respiration costs 

Nighttime transpiration is observed in many species when environments are hot (Dawson et al. 

2007; Yu et al. 2019). Reduced nighttime transpiration is recognized as a valuable target trait for 

breeding crops with high water use efficiency, e.g., (Coupel-Ledru et al. 2016). Nighttime 

transpiration in C3 and C4 plants is challenging to explain from an optimality perspective as it 

results in high water costs and no instantaneous carbon gain. An alternative explanation for this 

observation involves optimization of carbon gain over longer timescales. Cooling leaves at night 

via transpiration may reduce respiration rates, which increase exponentially with temperature. 

This strategy may complement or trade off with acclimation of respiration to elevated nighttime 

temperature (Reich et al. 2021). While the amount of cooling achieved by low rates of nighttime 

transpiration is likely small, the effect on carbon flux may nonetheless be significant. Reductions 

in nighttime carbon losses from respiration may offset low net carbon gains during the daytime 

when photosynthesis is limited at high temperatures and respiration is high. This might occur in 

hot environments where nighttime respiration is a major cost, and only for C3 and C4 species 

(Wang et al. 2021). Nighttime transpiration has also been linked to refilling of xylem embolisms 
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(Zeppel et al. 2014), though this may occur only under high water potentials (Klein et al. 2018). 

Such an effect would in turn benefit daytime carbon fixation, as it would enable more sustained 

stomatal opening. 

 

E3. Shading via parasol effects 

In extremely hot or bright environments, upper canopy sun leaves may photosynthesize sub-

optimally at the leaf level, but still contribute significantly to overall plant carbon assimilation 

(Ishii et al. 2004) (Figure 2B). While the morphology of sun leaves often helps maximize 

convective heat losses to the atmosphere (Vogel 2009), such leaves may become too hot or light-

saturated to efficiently carry out photosynthesis for much of the daylight hours, and may also 

require a high water supply in order to maintain open stomata, cool via transpiration, and avoid 

thermal mortality. However, this upper canopy layer may provide sufficient shading and 

associated cooling benefits to produce a canopy microclimate that enables lower-canopy shade 

leaves to photosynthesize at a lower water cost. This hypothesis has been supported in computer 

models of woody species architecture (de Haldat du Lys et al. 2022).  

 

There is limited empirical support for positive effects on carbon gain of shading in a Puerto 

Rican tropical wet forest (Miller et al. 2021) and also in a temperate tree experiment (Kothari et 

al. 2021). While leaves under moderate shade may have lower maximum photosynthesis rates, 

the lower maximum tissue temperature and lower leaf-to-air vapor pressure deficit may enable 

them to avoid midday stomatal depression and maintain photosynthesis during most of the day. 

Thus, in this case, the standard carbon-for-water optimization still occurs, but at the scale of the 

whole plant, not the scale of a single leaf. This strategy might occur if the relative benefit of 

lower-canopy leaves exceeds the relative cost of sacrificial upper canopy leaves that act as a 

parasol for the overall plant. Alternatively, sun leaves, which are typically much shorter-lived 

than shade leaves (Reich et al. 2004), might operate at high photosynthetic rate for a while when 

they are young, and then continue their role in the parasol function until they are replaced by new 

leaves. Regardless, measurements of photosynthetic capacity that focus on sun leaves may 

obscure optimization occurring at whole-plant level. 

 

Hypotheses relating to population ecology 
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P1. Time discounting 

In plants with ‘fast’ life histories or strong competition among species over a common growing 

season, there may be substantial benefits to carbon gained earlier in ontogeny (e.g., 

photosynthetic cotyledons, early leaf flushes). Carbon acquired earlier in life can be re-invested 

in the deployment of additional photosynthetic tissue, which further accelerates growth (Chabot 

& Hicks 1982). This is because, from an economic perspective, the time discounting rate for 

carbon could be large, and costs incurred later may not be as important as benefits obtained 

earlier (Westoby et al. 2000). This perspective is widely discussed in the leaf lifespan 

literature(Kikuzawa & Lechowicz 2006; Falster et al. 2012; Castorena et al. 2022) and can be 

incorporated into stomatal optimization models, though most models do not include it (Wang et 

al. 2020). Thus, high water use early on in a life cycle or in a growing season may be optimal, 

even if it later leads to drawdowns in soil moisture, stem hydraulic failure, or leaf mortality. For 

example, many facultative CAM plants begin life using C3 photosynthesis, because they 

prioritize rapid early growth over water use efficiency (Winter et al. 2011).  

 

P2. Deadline effects 

Related to the time discounting mechanisms, species may sometimes maximize fitness by 

exploiting limited resources as rapidly as possible, e.g., desert winter annuals where lifespans are 

limited by the onset of an arid foresummer, or in a savanna where locust outbreaks may occur 

driving fatal levels of herbivory (Figure 2C). As in a workplace analogy, any species that meets 

its deadline (completes its life cycle) is a winner, while all others that cannot meet the deadline 

are losers (Aronson et al. 1992; Peñuelas et al. 2004). This is effectively a special case of time 

discounting where the discount rate becomes infinite after a certain amount of time. In such a 

case, water use may reach levels high enough to exhaust water resources and risk vegetative 

tissue damage or death, so long as it leads to successful reproduction within a minimum time 

interval. 

 

P3. Leaf lifespan effects 

Species differing in their leaf lifespan (deciduous vs. evergreen) may have different water use 

strategies (Schulze 1982). In tropical species, there is often a tradeoff between drought avoidance 

(deciduousness) and hydraulic safety (Oliveira et al. 2021). However, much of this data comes 
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from seedlings, so empirical knowledge remains limited. Deciduousness may also influence 

water use in ways unrelated to hydraulic safety. Drought-deciduous species do not have leaves 

for part of the year, and benefit from not needing to pay the water and carbon costs of 

maintaining them (via transpiration and respiration respectively) (Vico et al. 2017). However, 

they also lose out on the opportunity to use water at other times of year to support carbon uptake, 

as well as on the opportunity to vegetatively compete with other species that could otherwise use 

the same shared pool of soil water (note that this argument is reversed when snowy/wintry 

conditions rather than drought are considered). Deciduous species also may take more aggressive 

water use strategies (Zeppel et al. 2014) when in the presence of evergreen species or when they 

have evolved under competition from evergreen species. 

 

P4. Tradeoffs among fitness components 

In plants where fitness is most demographically sensitive to variation in reproduction or survival, 

rather than to growth, water may be used in ways that deprioritize carbon gain in leaves (Figure 

2D). This could drive apparently non-optimal stomatal regulation at the leaf level if allocation is 

not correlated with signals known to drive stomatal regulation, such as variation in stem water 

potential. For example, allocation of carbon towards osmotic regulation (e.g., for freezing 

responses) or storage (at the end of a season), or allocation of water towards fruit production, 

could lead to low leaf water use or leaf death, even when this strategy is optimal for fitness 

overall.  

 

Some of these strategies might be expected to be more common in species where selection may 

be stronger for non-growth fitness components. During drought, plants might be more limited by 

water than by carbon, so they may prioritize allocation to reproduction over that to leaves, not 

only because of fitness, but also because water loss may be higher from leaves than from flowers 

or fruits. In stressful conditions, prioritization of water for fruit growth has been reported in 

Solanum lycopersicum (tomato) (Harrison Day et al. 2022) while prioritization of transpiration in 

flowers occurs in Glycine max (soybean) (Sinha et al. 2022), and prioritization of storage occurs 

in Picea abies (spruce). There is also increased allocation to reproduction when water is limited 

during seasonal and El Niño drought in tropical forest (Detto et al. 2018). Similarly, some annual 

(monocarpic) crop species need to initiate whole-plant senescence to remobilize and transfer 
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assimilates to grains (Yang & Zhang 2006). The amount of carbohydrates fixed prior to 

senescence can be particularly important for grain filling (Asseng & Van Herwaarden 2003). 

Therefore, leaves of annual plants may maximize short-term assimilation in the phase just before 

grain filling and senescence. 

 

Additionally, selection may favor whole-plant survival even when it impacts leaf performance. 

For example, using advective heat transfer of xylem sap described above, Pinus ponderosa 

seedlings have been observed to maintain stem temperatures as much as 15 °C below ambient air 

temperature, enabling them to survive in open forests where soil surface temperatures could 

exceed 75 °C (Kolb & Robberecht 1996). The lethal temperature for stems was 63 °C, so the 

elevated stomatal conductance found in needles of surviving plants appears critical for whole-

plant survival. As another example, Helianthemum squamatum switches between surface and 

deep water sources in dry conditions. This reduces water use efficiency from expected values, 

because the switching behavior has high costs that lead to reduced nutrient uptake, which then 

reduces leaf photosynthetic efficiency (Querejeta et al. 2021). 

 

P5. Non-adaptive mechanisms 

It is also possible that very high or low water use may be maladaptive and occur as a necessary 

cost driven by other processes that influence population fitness. A range of mechanisms are 

possible, and increasingly being recognized. Limited phloem export capacity or sink limitation 

may mean that water is often not transpired when it is available and could be used (Fatichi et al. 

2014), because any resulting carbon gain would result in accumulation of reaction products and 

inhibit further reactions (e.g., driving the commonly-observed late afternoon depression in 

photosynthesis). This also could occur if plants are adapted to lower levels of atmospheric [CO2] 

than they currently experience. The same outcome can result from sink limitation; reduced sink 

activity results in carbohydrate accumulation in leaves, which triggers downregulation of 

photosynthesis and transpiration (Quereix et al. 2001; Li et al. 2007). 

 

Additionally, the temperature dependence of cuticular conductance described above could lead to 

higher water use than would be adaptive, either because it is an unavoidable biophysical reality 

(Slot et al. 2021) or because of tradeoffs with photosynthetic capacity (Machado et al. 2021).  
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Alternatively, correlated selection (e.g., due to genetic linkage) could occur, resulting in non-

optimal water use being a necessary consequence of strong selection for other traits. However 

there seems to be limited evidence for this given the omnigenic basis of many complex traits in 

plants (Boyle et al. 2017). Or, in some abiotically non-stressful environments, neither water use 

nor carbon gain may be limiting to performance, when for example, competition for pollinators 

or dispersers may be a priority. In such cases, water use strategies may be variable and 

inexplicable from a Panglossian optimality perspective (Gould & Lewontin 1979). While it 

seems unlikely that selection does not act strongly on water use, the alternative hypothesis 

should be rejected based on evidence rather than assumption. 

 

Hypotheses relating to community ecology 

C1. Mechanisms that promote coexistence 

The fitness of a population may be influenced by community context. Mechanisms that promote 

coexistence effectively increase the long-term fitness of a population. Therefore, mechanisms 

influencing coexistence may lead to selection on water use behavior for species when they occur 

with other species, whether the underlying species interactions are positive or negative. 

Coexistence mechanisms are processes that yield higher intraspecific competition relative to 

interspecific competition when each species is rare, meaning that species are able to recover 

from low densities without becoming extinct (Chesson 2000). These coexistence mechanisms 

necessarily operate at scales beyond that of the individual or population.  

 

Temporal niche partitioning is one such mechanism. If water is a key resource, then some 

species may perform better only when water availability is consistent over time and space, while 

others may perform better when water availability is variable over time and space. Thus, some 

species may appear to use non-optimal water use strategies when measured in a constant 

environment, when in fact their strategy is optimal for population dynamics when environments 

fluctuate (Chesson et al. 2004). 

 

Spatial niche partitioning is another mechanism. If species exploit water at different soil depths, 

there may be reductions in interspecific competition mediated by shifts in species’ water use 
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efficiencies or timing of water use (as droughts affect each depth differently) and potential 

impacts on ecosystem water use and community diversity. Evidence for complementarity and 

partitioning remains mixed (Verheyen et al. 2008; Bachmann et al. 2015; Guderle et al. 2018). 

Alternatively, hydraulic redistribution of moisture between soil depths (Richards & Caldwell 

1987; Caldwell et al. 1998) could instead drive facilitation or increased interspecific competition 

(Dawson 1993). Deeply-rooted plants have the potential to engineer the thermal environment of 

whole communities, not only by providing added soil water via hydraulic lift (Dawson 1993), but 

also by modifying the humidity of the shared near-surface environment in a community.  

 

The storage effect is an additional mechanism that can operate if water availability varies over 

time or space. If some species have differential responses to water availability, then in ‘good’ 

years they may be able to store these gains as larger population sizes or seedbanks, while having 

a relatively small negative effect on their populations in ‘bad’ years. This mechanism is known 

to operate in Sonoran Desert annual plants (Venable & Pake 1999), which vary widely in their 

water use efficiency (Angert et al. 2009). Succulents might also be able to store water for 

multiple months or years before using it, yielding a lagged version of the storage effect. This 

population buffering mechanism means that species that have non-optimal water use within bad 

years may be buffered from negative consequences due to their success in good years. 

 

C2. Hoarding and spite 

In other cases, fitness may not be maximized by coexistence, but rather by resource preemption 

(Figure 2E). Species may succeed by using soil water to cause the local extinction of other 

species. The balance between facilitation and competition is known to shift as soil water 

becomes more limiting (Holmgren et al. 1997; Haberstroh & Werner 2022). Resource 

preemption may thus arise only under stressful circumstances (i.e. not likely in very wet 

environments, or in those with many species present, or for small-sized plants). 

 

Resource preemption can occur via hoarding. Plants could rapidly acquire soil moisture, then 

store it in tissues or via capacitance, after which they can transpire it at any future time while 

also preventing other plants from using it, as might occur for desert plants like agaves, various 

columnar cacti, or baobabs. Alternatively, they could redistribute it to deeper soil (hydraulic 
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descent) and make it unavailable to shallow-rooted competitors but available to themselves. This 

may occur primarily in environments where precipitation events are rare. Hoarding does occur 

for carbon and other nutrients in plant-fungal interactions, wherein fungi withhold transfer of 

mineral nutrients until the plant provides a higher amount of carbon in return (van’t Padje et al. 

2021b, a), suggesting hoarding may also occur among plants.  

 

Resource preemption can also occur via spite. Aggressive water use can manifest as exuberant 

transpiration. General theory for spite has been developed (Hamilton 1970), but these ideas are 

not yet included in models of plant water use. However, if a species uses soil water quickly, it 

could make that water unavailable to other species. Spite would only be successful in cases 

where one species is able to cause greater harm to all other species than it causes to itself through 

such aggressive soil water use. Such an idea is consistent with the minimum resource level 

concepts in R* resource competition theory (Tilman 1982). A consequential hypothesis is that 

high nighttime transpiration (Wang et al. 2021) or hydraulic descent (Hultine et al. 2003) may be 

examples of spiteful water use by drought-tolerant species to harm drought-intolerant species.  

 

C3. Bluffing and learning 

In a community context, if all species benefit from using a common resource (water), the optimal 

strategies (at individual or population level) may differ strongly from those in a single-species 

context. From this perspective, water use strategies could be viewed as a game in which the 

opponent’s strategy is only partially observable. The game can have a Nash equilibrium, i.e. a 

stable outcome where each species is better off retaining its strategy than switching to a different 

strategy. This has been demonstrated in one stomatal regulation model (Wolf et al. 2016) where 

competition causes changes in water use efficiency under drought, and has been considered in 

other allocation models (Farrior et al. 2013; Lu et al. 2020). It has also been shown empirically 

in several species, Pinus taeda (Zenes et al. 2020) and in Lactuca sativa (lettuce) and Solanum 

lycopersicum (tomato) (Vysotskaya et al. 2011). The broader game theory of competitive or 

cooperative depletion of water resources has also been considered in human contexts (Madani 

2010) but not widely applied to plants. 
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In a Nash equilibrium, the optimal strategies are often mixed, in that they involve randomizing 

choice of action over some probability distribution. This occurs because the actions taken by 

other species may influence the value of the actions taken by a focal species; additionally, each 

individual may have limited information available about the resources available to other 

individuals and may not know their actual strategy. Rather, each individual may only be able to 

respond to observed sequences of actions taken by another individual, e.g., via rhizosphere 

processes including sensing soil moisture drawdown near roots, or chemosensing of other 

species’ root hormones and exudates (Jackson 1997; Hinsinger et al. 2005) or of other volatile 

cues (Jin et al. 2021).  

 

In simple terms this means that, in community contexts, species may deploy unusual behaviors. 

They may bluff with their water use, by using more or less water than they would otherwise, to 

send a false signal to others or force others to take certain actions. They may also invest in 

learning, by exploring the environment through yet-unknown means to better predict the current 

or future levels of water availability. For example, species that pre-form buds years in advance 

like Veratrum tenuipetalum (Iler & Inouye 2013) are effectively gambling on the future state of 

the environment being favorable for photosynthesis.  

 

C4. Positive species interactions 

A fundamental premise of much water use theory and the ideas outlined above is that the most 

common interactions among plant species are negative and often competitive. However, the 

assumption of competition as the fundamental process may reflect our biases more than reality 

(Simha et al. 2022). Instead, beginning from a viewpoint of abundance (Kimmerer 2020) and 

mutualism (Bronstein 2015), sharing water may actually be mutually beneficial in many cases, 

especially when indirect interactions between plants occur that are mediated by other species 

(Figure 2F). As conceptual examples, a first species could provide water to a second species that 

in turn transpires it and provides beneficial cool and shaded conditions to the first species; or the 

second species could attract insects that would also pollinate or defend the first species. 

 

Species may use water in ways that appear non-optimal from an individual performance 

perspective or from a competitive perspective, because they produce cooperative (positive) 
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interactions. Species that are most able to access water could redistribute it to other species that 

need it (e.g., via hydraulic lift, or evaporative cooling affecting a whole community), and in turn 

receive a non-water benefit they cannot provide for themself. Temperate trees using water to 

support their own growth provide shade to some other species that in turn grow faster than they 

would alone (Kothari et al. 2021). Or, savanna trees bring up water from deeper soil layers and 

redistribute it in the more superficial root zone (i.e., hydraulic lift), improving grass quality and 

attracting herbivores (Treydte et al. 2007, 2011). Grass decomposition and addition of urine and 

feces may in turn improve the nutrient availability for the trees.  

 

C5. Negative species interactions 

Mycorrhizal fungi have been implicated in changes in various aspects of plant water use, 

including increased aquaporin function, and increased root hydraulic conductivity, generally 

resulting in improved performance of mycorrhizal plants under drought (Lehto & Zwiazek 

2011). They thus generally are considered to yield positive interactions with plants. However, in 

the process of maximizing their own fitness, these fungi could lead a plant into adopting a non-

optimal water use strategy in a parasitic interaction. Mycorrhizal fungi are known to exploit 

multiple species of plants to extract the best price for their mineral nutrients when demand is 

highest (Whiteside et al. 2019). Direct transfer of water taken up by arbuscular mycorrhizal fungi 

to host plants has also recently been demonstrated (Kakouridis et al. 2022). Increases in plant 

transpiration and photosynthesis also have been observed when fungal partners are present for 

Linum usitatissimum (flax) (Drüge & Schonbeck 1993) and Citrus jambhiri (rough lemon) (Levy 

et al. 1983), suggesting that some aspects of plant water use may be mediated by exchanges with 

fungal partners. Whether and when these interactions are negative instead of positive remains 

under-explored. 

 

Endophytes, organisms living inside leaves, may also have negative interactions with host plants 

through causing non-optimal water use for their hosts. Minimum leaf conductance is almost 

twice as high in Theobroma cacao (cacao) leaves with natural abundances of endophytes than in 

leaves without endophytes (Arnold & Engelbrecht 2007). All plants in natural ecosystems 

contain leaf endophytes (Rodriguez et al. 2009), but densities and species assemblages vary 

widely, even across leaves within individual trees (Arnold & Herre 2003). Water loss through 
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leaf cuticles or from leaky stomata may thus be affected by the abundance and perhaps identity 

and functional properties of leaf endophytes, independent of the short-term carbon economy of 

the leaves. 

 

Epiphylls, plants growing on top of the leaf surface, can also have negative interactions with 

their host plants through water use. As leaves of evergreen plants age, they may accumulate 

epiphylls to the extent that exposed leaves only receive 15-45% of the sunlight they would 

receive in the absence of epiphylls (Coley et al. 1993). As a result, the photosynthetic capacity of 

these shaded leaves is reduced (Anthony et al. 2002), and presumably also their water use. The 

retention of such leaves that are unlikely to fix significantly more carbon than they use in 

respiration appears non-optimal from both a carbon and water use perspective, unless there are 

other not yet understood benefits of epiphyll presence, e.g., uptake of foliar water (Rosado & 

Almeida 2020) or nitrogen (Bentley 1987), or benefits of maintaining old leaves, e.g., taking up 

space and shading competitors.  

 

Implications for leaf and earth system models under climate change 

These hypotheses, if supported widely by empirical data, would require substantial revisions to 

extant water use theory and the leaf and earth system models they are used within. Many 

process-based leaf models use the Ball et al. (1987) or Medlyn et al. (2011) representation of 

stomatal conductance, in which stomatal conductance is calculated based on a suite of 

environmental variables, and notably, the photosynthetic rate and a parameter that identifies the 

relationship between stomatal conductance and photosynthesis (often referred to as g1 in these 

models, representing the inverse of water use efficiency). The g1 value can change within and 

across species, and by plant functional category if used in a larger-scale model. The value may 

also respond to processes described by any of the above hypotheses, though such effects are not 

yet implemented. 

 

Errors in the plant water use theory currently used in many Earth System Models (ESMs) can 

have important consequences for understanding changes in water resources, heat and 

precipitation extremes, and ecosystem functioning under changing climate . This is because the 

soil-plant-atmosphere continuum representations in ESMs often uses similar or the same 
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marginal gain theory used in leaf-scale models to calculate ecosystem stomatal conductance 

(Clark et al. 2011; Massoud et al. 2019; Koven et al. 2020). There are known inaccuracies in 

ecosystem water fluxes simulated by ESMs (Li et al. 2021), which ultimately can influence other 

simulated quantities like soil moisture and precipitation. Even when average patterns and trends 

are simulated reasonably well, inaccuracies can manifest in other functions and time scales, such 

as predicting future heatwave intensities and durations (Kala et al. 2016). 

 

A key question is whether adding complexity to ESMs would be useful when upscaled 

predictions of water flux are needed (Medlyn et al. 2017). Because ecosystem scale predictions 

are already usually successful and are made without including detailed vegetation dynamics, it is 

unlikely that the population and community ecology hypotheses we outlined would require 

incorporation into theory used in ESMs. However, the extreme environment hypotheses should 

likely be integrated into water use theory given existing evidence that current theory fails in 

some of these cases, and because of the forecasted higher prevalence of extreme environments in 

the near future. We suggest that incorporation of cooling (E1) into theory will be most 

productive. However, as ESMs continue to be used to answer more complex questions related to 

feedback between vegetation and climate, some of the population and community context 

hypotheses may also become relevant. We speculate that tradeoffs among fitness components 

(P4) and resource hoarding (C2) are the two highest priorities. 

 

Conclusion 

We have highlighted numerous hypotheses that indicate the multiple values of water to plants, 

and that have varying degrees of support based on empirical observations. Not all these 

hypotheses may be common, nor equally important. However, in rejecting or supporting the 

hypotheses underlying them, we may come closer to a more complete theory of plant water use. 

More significantly, many of these hypotheses may be relevant for some species and not others, 

or in some environments or communities and not others, suggesting that it will be difficult to 

generate a single water use theory applicable in all situations. 

 

We are not seeking to challenge the relevance of extant theory. It is correct, or close enough to 

correct, for most scenarios that have been of interest to date. Rather, we aim to highlight the 
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many additional values of water relevant to more types of plants and environments than this 

theory has considered, and in doing so, to challenge the implicit use of simple economic ideas 

within ecophysiology. The alternative ideas we proposed may have potentially large 

consequences for individual plants, for community dynamics, and for ecosystem fluxes. By 

expanding beyond ecophysiology to incorporate population and community ecology – with all 

their uncertainties and complexities, we may achieve a more complete understanding of plant 

water use. 
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Figures 

 

Figure 1. Overview of hypotheses considered in this manuscript. Hypotheses are arranged by 

biological scale (vertical) and temporal scale (horizontal) at which they might operate. They are 

colored by category: E, extreme environments (orange); P, population ecology (green); C, 

community ecology (purple) and contrasted with extant theory: M, marginal gain (red). 

 

Figure 2. Speculative examples of the multiple values of water to plants. Photos are selected to 

illustrate concepts, not necessarily because they directly confirm a hypothesis. A) In southeastern 

Arizona, a cottonwood tree (Populus fremontii) growing in hot conditions with abundant water 

may use water for evaporative cooling instead of photosynthesis (Hypothesis E1). B) In a moist 

tropical forest in Borneo, water used to maintain the top layer of a forest canopy may provide 

shading to photosynthetically active leaves in lower layers (Hypothesis E3). C) In the northern 

Sonoran Desert where winter rain is the only moisture source before spring/foresummer drought, 

water may be used as quickly as possible to support seed production before the drought deadline 

occurs (Hypothesis P2). D) In a tomato plant, fitness may be enhanced by allocating water to 

higher fruit production even if it reduces water available for photosynthesis and growth 

(Hypothesis P4). Image in public domain. E) In the southern Sonoran Desert, succulent or deep-

rooted plants may hoard water (via vegetative storage or hydraulic descent) to prevent it from 

being used by competitors (Hypothesis C2). F) In the alpine zone of the Rocky Mountains, 

plants may use water to help neighbors in a facilitative or mutualistic relationship, e.g., by leaf 

transpiration that co-creates a more humid microclimate in dry sites, or via investment in flowers 

and flower transpiration that attracts shared pollinators (Hypothesis C4). Photo credits: A: Kevin 

Hultine; B,C,E,F: Benjamin Blonder; D: public domain. 
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Photo of mature Fremont
cottonwood (Populus
fremontii) trees along the

San Pedro River in southeastern, Arizona, USA (photo credit: K. Hultine). Fremont
cottonwood trees along the warm edge of its distribution have been shown to prioritize
high midday stomatal conductance values and cooler leaf temperatures at the potential risk
of hydraulic failure relative to Fremont cottonwood trees located in cooler habitats.
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B)

C)

A) Avoiding thermal damage and mortality (E1) B) Shading via parasol effects (E3)

C) Deadline effects (P2) D) Tradeoffs among fitness components (P4)

E) Hoarding and spite (C2) F) Positive species interactions (C4)
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